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A method is described for enantiomorphic space-group determination which depends upon a simple 
analysis of a single convergent-beam diffraction pattern. The method, which in principle may be applied 
to any enantiomorph, is here used to identify the space group of dextrorotatory s-quartz. In this, a four- 
beam pattern is analysed by visual matching to an analogue computer display. 

Introduction 

In a recent publication (Goodman & Secomb, 1977) a 
method was described for distinguishing between two 
enantiomorphous space-groups, and this was illus- 
trated by a space-group determination for dex- 
trorotatory s-quartz. This method was essentially a 
classical one of combining data from several settings 
reached by crystal goniometer rotations of known 
sense about a particular axis. An essential step in this 
procedure was the determination of direction in one, 
or more, non-centrosymmetric projections and this 
determination involved numerical N-beam calcula- 
tion. 

Following this, an effort was made to find an alter- 
native method for enantiomorphic determination 
which was firstly non-numerical and secondly which 
could be applied to a single diffraction pattern 
involving if possible a simple interaction (i.e. a three 
or four-beam interaction). In the first aim we have been 
unsuccessful and some reasons for this are given in 
our discussion. We present here a single-pattern four- 
beam analysis which, although still dependent upon 
numerical evaluation, has the advantage over the 
classical method of depending only upon information 
contained in one convergent-beam pattern. Further- 
more, in point of convenience, the calculation required 
involves only four-beam coupling and hence can be 
performed with an analogue-computer video-display 
system (Johnson, 1968). 

Enantiomorphic determination from a four-beam pattern 

Fig. 1 shows a convergent-beam pattern from dextro- 
rotatory s-quartz in which the main dynamic effect is a 
four-beam interaction involving the ~--'240, 3301 and 
3141 reflexions. The same pattern was used in the 
earlier work (Goodman & Secomb, 1977, Fig. 8) 
simply to obtain an estimate for V:~3ol. However, 
additional information relating to structure-factor 
phases is contained in the main diffracted-beam intens- 
ities. The most obvious features of these three intensity 

distributions are (i) a marked asymmetry within the 
2240 pattern about the four-beam interaction inter- 
section point; (ii) a break in the patterns of all three 
diffracted beams at this point with an additional peak 
in the case of the 5141 beam. It was found from the 
computation that the central peak of the 5141 beam is 
the intensity feature most sensitive to enantiomorphic 
change. Other features were either only weakly or 
inappreciably dependent on enantiomorph. Reasons 
for this, and criteria for selecting suitable patterns for 
enantiomorphic determination are given in the next 
section. 

Table 1 shows the scattering amplitudes and phases 
for the zero and first upper layer of D~ (P3x21) s-quartz, 
i.e. the space-group allocated by de Vries (1958) to 
laevorotatory s-quartz. 

The structure factor of a crystal and its en- 
antiomorph are related by complex conjugation. A 
convincing 'experimental' demonstration of this is 
obtained by the following considerations. The trans- 
formation of one space group into its enantiomorph 
is achieved by a single reflexion in any mirror-plane. 
This transformation applies to both real and recip- 
rocal space. The criterion for the choice of the mirror 
plane is that it should contain the c axis and one other 
specific symmetr ry axis" in this case the anti-symmetry 
axis parallel to [-1120]. With any other choice of mirror 
plane the resulting enantiomorph would require a 
rotation in order to bring its kinematic diffraction 
pattern into directional coincidence with that of the 
first crystal. The symmetry-imposed condition means 
that the scattering vectors in a particular diffraction 
pattern have scattering factors which are either un- 
changed and real, or complex-conjugated with en- 
antiomorphic transformation. The scattering vectors 
involved in the present problem are given in Fig. 2, 
which is a diagramatic representation of the four-beam 
interaction of Fig. I. The line of intersection of the 
transforming mirror plane with the plane of the zero 
and first upper layers is indicated by the lines r-r in 
Table 1. The relevant scattering factors for the two 
enantiomorphs are given in Table 2. 
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Table 1. Structure factors for a-quartz in hexagonal display 
(a) and (b) give the amplitudes and phases for the zero layer; (c) and (d} the amplitudes and phases for the first upper layer. The tabulation is for 
the space group D~. Values for D36 are obtained by reflexion in the vertical mirror plane whose inters_ection with the_layers is indicated 
'r . . . . . .  r'. Debye-Waller factors of Bsi = 0-39, B o = 0.8 were used in the structure-factor calculation. The 2240, 3301 and 5141 reflexions used 

in the experiment are encircled. 
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Fig. 2. A diagramatic representation of the four-beam interaction 
evident in Fig. 1. Real and imaginary components of the scattering 
factors are given in brackets beside the appropriate scattering 
vector, showing alternative signs corresponding to the two 
enantiomorphs. 

Table 2. Values of the real and complex amplitudes of the 
scattering vectors shown in Fig. 2 for the two space 

groups of a-quartz 

Space 
group 2240 ~301 3141 

D34 1"1 + i(0"53) 2.1 0 .74 + i(0"24) 
D~ 1" 1 - i(0"53) 2.1 0-74 - i(0"24) 

The four-beam problem was set up on an analogue 
computer,  an earlier version of which was described 
by Johnson (1968), and calculations carried out for 
both the space groups with the two sets of structure 
factors given in Table 2. The results appear in Fig. 3. 

Initially, a crystal thickness was assumed which was 
determined kinematical ly from the weak 1120 re- 
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Fig. 1. Convergent-beam pattern, taken at 80 kV, from a 
sample of dextrorotatory a-quartz. Diffracted beams invol- 
ved in an approximate four-beam interaction are encircled 
and indexed. 

[To face p. 998 
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(a) 
Fig. 3. (a) Enlargements of the diffracted beams ~40 ,  5301, ~;141 from Fig. 1. 
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(ii) 

(i) 
(b) 

Fig. 3. (cont.) (b) Results of  a four-beam dynamic calculation from the video-display of an analogue computer for the follow- 
ing beams and thicknesses: (i) ~240 beam with the thicknesses 1600/~, (top pattern) and 1760/~, and (ii) ~301 beam with the 
thicknesses (proceeding from the top): 1600, 1760 and 1930 .~ respectively. 
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(i) (ii) 
(c) 

Fig. 3. (cont.) (c) Results from the same calculation for the 5141 beam, showing the contrasting result from the two enantio- 
morphically related space-groups, (i) D 6, and (ii) D~. The thickness sequence in both these figures is 1600, 1760 and 1930 
A running from top to bottom. 
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flexion. This value, which may be fairly near the actual 
crystal thickness, is 2200 A (Goodman & Secomb, 
1976). However, an effective thickness now had to be 
determined from internal evidence within the four- 
beam pattern. This was done by__matching_ the four- 
beam-calculated results for the 2240 and 3301 (rela- 
tively space-group insensitive) intensity distributions, 
and finally those for the 3141 distribution, to the 
observed distributions. A different, and in this case a 
lower, 'thickness' value is obtained in this way as a 
result of the neglect of weak-beam interactions. Results 
for the 2--240 reflexion show that the effective thickness 
lies between 1600/~, and 1760 A. Results for the 3301 
reflexion, which has more thickness-sensitive detail, 
give a best-fit thickness value of 1760+150 A. An 
examination of the results for the 5141 beam shows that 
a clear space-group identification is possible for thick- 
ness values between 1600 A and 2200 A. Within this 
range the space group D~ (P3121) yielded a central 
minimum, in contrast with the central maximum given 
by the space group D 6 (P3121) and observed experi- 
mentally. The best fit with experiment was at the 
thickness 1760 A and for the space-group D6; D34 gave 
no agreement at any thickness within the range of the 
calculations. It was therefore concluded that our 
space group was in fact D 6 in agreement with our 
previous determination for this specimen. 

Criteria for selecting four-beam patterns 

The possible use of three-beam interactions for identi- 
fication of enantiomorphs was earlier mentioned by 
Kambe & Moli6re (1970) in a review article, although 
they gave no practical details. Kambe's (1957) earlier 
example was confined to centrosymmetric phase 
determination. Mathematically the separation of en- 
antiomorphs presents the same problem as the identi- 
fication of polar direction in a non-centrosymmetric 
structure, namely that of distinguishing between a given 
set of structure factors, and the set related by complex 
conjugation. This involves the phenomenon now 
known as the 'break-down of Friedel's law' in dynamic 
diffraction. 

Although it is certainly possible to obtain a Friedel's 
law break-down in a three-beam interaction, a four- 
beam interaction is greatly to be preferred in practice. 
There are two main reasons for this. (1) In general, the 
four-beam interaction has a greater dynamic content, 
i.e. there are a greater number of scattering paths for 
each order process, and a greater N-beam to two-beam 
contribution to particular diffracted beams (see later 
note). (2) In all but triclinic structures (and these do 
not contribute to the enantiomorphic-pair space 
groups), a four-beam pattern is more readily obtained 
in the useful region of reciprocal space neighbouring 
a zone axis. 

To determine whether a particular four-beam pattern 
is a good choice for enantiomorphic analysis, one first 
has to examine the principles involved. 

The two interference phenomena observable in Fig. 1 
and directly attributable to the four-beam interaction 
are the line asymmetries and the central breaks in the 
intensities of the diffracted beams at the point corre- 
sponding to simultaneous exact excitation of the three 
reflexions. The line asymmetries, as in the three-beam 
case, can be demonstrated to be sensitive to structure- 
factor phases (and hence useful in a general structure 
analysis), but intensitive to enantiomorphic trans- 
formation.* We therefore concentrate on the central, 
or 'thin-phase-grating' point, so called here because 
we need only the thin-phase-grating terms from the 
general solution (Cowley & Moodie, 1962) to evaluate 
the four-beam interaction result for this point. (This is 
of value in analysis rather than calculation since the 
Born series is tedious to evaluate numerically.) 

Using the Born series expansion for the thin-phase- 
grating (Cowley & Moodie, 1962), one can show that 
this break-down of Friedel's law occurs as a result of 
adding the n-even terms (where 'n' is the order of a 
scattering path) to the n-odd terms (see for example 
Goodman & McLean, 1976). Following equation (4) 
from Goodman & McLean (1976), a break-down of 
Friedel's law will occur, provided either one of the 
contributing structure-factor products En(hk), for n- 
odd or n-even respectively, is complex. This condition 
in turn is met when any one of the contributing struc- 
ture factors is complex in a non-trivial way, i.e. being a 
Fourier component of an asymmetric potential dis- 
tribution in 'real' space. To obtain a substantial or 
readily observable break-down requires that the 
complex structure factor or structure factors concerned 
have substantial moduli, Iv hi, and phase angles ah 
differing appreciably from 0 or ~z. 

It can be shown by a more detailed examination of 
the relevant products En(hk) for the four-beam con- 
figuration depicted in Fig. 2 that these requirements 
are met for the 2240 and 3140 beams but not for the 
3301 beam (the scattering factor V~aol being real). The 
fact that the corner 5140 beam has the greater sensi- 
tivity to enantiomorphic change, as found for example 
by calculation, is due to the relatively low value of 
I V314ol resulting in a lesser domination of the intensity 
distribution by the two-beam contribution (which, on 
its own, contains no phase information). This can be 
seen experimentally by inspection of Fig. 1. 

From these considerations, we may examine the 
structure-factor phases for hexagonal or fl-quartz. The 
phases for the first upper layer of D~ (P6422) fl-quartz 
are shown in Table 3(a). The phases for the zero layer 
are all 0 or rt, since the hexagonal structure has a 
centrosymmetric projection. We can see from the 
encircled phases that the same orientation used in 

* In four-beam cases such as shown in Fig. I it is often possible 
to understand the line asymmetry in the two strongest reflexions 
from a three-beam interaction ignoring the diagonal beam, and that 
in the diagonal beam from the four-beam interaction. With these 
simplifications, a ready interpretation of the line asymmetries can be 
made, for example, by the procedure outlined by Goodman (1973). 
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Table 3. (a) Hexagonal display of structure-factor phases for the first upper layer of fl-quartz [space group D65(p6422)] ; 
(b) Equivalent structure-factor phases obtained by calculating for the Si atoms only in fl-quartz 

(a) -0.8 2~ 0.6 -r. -0.6 -21] 0.8 (b) 0 0 0 0 0 0 0 
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- 2 . 7  2 1  - i .  8 211 - 211 21 - 211 

3 3 3 3 3 
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Fig. 1 would give an enantiomorphic determination, 
since the diagonal terms for 3141 are complex with 
ct5141=0.8. Because of the relatively small value of 
V5141, however, it would be advantageous to change 
the orientation slightly so as to excite the 2241 and 
3300 reflexions together with the 3141 reflexion, and 
hence obtain two com_j~lex terms from the first upper 
layer (since both the 2240 and 3300 structure factors 
are now real). 

It is informative to compare the phases of Table 3(a) 
with those of Table 3(b) calculated for the same fl- 
quartz structure with only the Si atoms. With this 
table we can see that neither of these beam combina- 
tions would be sensitive to enantiomorphic change. 
For  this simplified structure, working only from the 
information provided by this table, one would be 
forced to use a three-beam pattern for this purpose. 

This comparison points out the numerical nature 
of the present determination, and its dependence upon 
oxygen coordinates to show up a space-group prop- 
erty.* 

A more detailed discussion of the problem of phase 

* The inability to find a non-numerical, thickness-independent 
solution to this particular space-group problem, as mentioned in our 
introduction, can be appreciated in a more general way as follows. If 
we consider only elastic scattering (without absorption) and there- 
fore have an Hermitian scattering matrix, the scattering matrix for 
the crystal and its enantiomorph are related by the complex conjuga- 
tion of the non-diagonal terms. In other words, the matrix for the 
enantiomorph is the transpose of that for the crystal: 

Menant .  = M r .  

This means that the eigenvalues obtained for equivalent settings 
for the two cases are identical, and the eigenvectors are related by 
complex conjugation. This close relation (which follows from the 
known properties of M r) virtually rules out the possibility of a 
simple, non-oscillating solution to this problem, and points out the 
difference between this and all other space-group-identification 
problems. 

determination from three and four-beam patterns will 
be given elsewhere (Goodman, 1977). 

Summary 
The method for enantiomorphic identification outlined 
here has the advantage over the first method, referenced 
above, of requiring much less experimental and com- 
putational effort. It also offers a more reliable identi- 
fication by eliminating the need to correlate experi- 
mental rotations of the specimen with those of a 
model structure. 

It should always be possible in practice to find 
suitable three and four-beam patterns sensitive to en- 
antiomorph, and with a real structure four-beam 
patterns should be available. Since four-beam patterns 
contain, in principle, a great deal more phase informa- 
tion than do three-beam patterns, they are to be pre- 
ferred for this identification. 

The use of three or four-beam patterns for enantio- 
morph analysis depends upon our ability to distinguish 
between upper and lower-layer reflexions. If we were 
unable to distinguish between the pattern involving 
3301 and that involving 3301, the space-group could 
not be identified. We are able to make this distinction 
without recourse to manipulation history of the crystal 
by examining the weak reflexions accompanying the 
four involved in the strong interaction, a fact which 
can be understood by examing the appropriate Ewald 
constructions. In other words, we are dependent upon 
the finite curvature of the Ewald sphere to give us the 
sign of the third dimension, revealed by the sign of 
Ewald sphere curvature in the three-dimensional 
lattice. Thus, we solve a three-dimensional symmetry 
problem from a planar interaction, the out-of-plane 
information being supplied by other reflexions in the 
same pattern. 



P. GOODMAN AND A. W. S. JOHNSON 1001 

References 

COWLEY, J. M. & MOODIE, A. F. (1962). J. Phys. Soc. Japan, 
17, 86-91. 

GOODMAN, P. (1973). Z. NaturJorsch. 28a, 580-587. 
GOODMAN, P. (1977). Proceedings of the 50th Anniversary of 

the Discovery of Electron Diffraction Conference. To be 
published. 

GOODMAN, P. & MCLEAN, J. D. (1976). Phil. Mag. 34, 861- 
876. 

GOODMAN, P. & SECOMB, T. W. (1977). Acta Cryst. A33, 126- 
133. 

JOHNSON, A. W. S. (1968). Acta Crvst. A22, 14-24. 
KAMBE, K. (1957). J. Phys. Soc. Japan, 12, 13-39. 
KAMBE, K. & MOLI/~R~, K. (1970). Advanc. Struct. Res. 

Diffr. Meth. 3, 53-100. 
VRIES, A. DE (1958). Nature, Lond. 181, 1193. 

Acta Cryst. (1977). A33, 1001-1004 

The Systematization of Molecular Crystal Structures 
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A scheme of classification of molecular crystal structures is proposed. The structures are divided into 
homo-, hetero and quasiheteromolecular. The next step of the classification is the division into chiral types 
which define the character of the systems of equivalent positions occupied by the molecules. Finally, the 
subdivision into chiral classes reflects the equality or inequality of symmetrically unrelated molecules. 
Statistical data are given about the distribution of quasiheteromolecular structures into chiral classes. 
The concept of an expanded (non-Fedorov) space group is proposed to describe such structures. 

The rapid development of X-ray structural investiga- 
tions has led to a large expansion in information about 
the structure of crystals. However most crystal chemists 
concentrate on the details of the molecular structure; 
the problem of the relative disposition of molecules in 
the crystal is often ignored or treated only super- 
ficially. Details of the architecture of molecular crystals 
are of interest because the solid-state reactivity and 
many physical and physico-chemical properties of 
crystalline substances depend on the molecular pack- 
ing. 

In this paper we propose a scheme of classification 
of molecular crystal structures. The Fedorov space 
groups are basic to this systematization but in certain 
cases this apparatus turns out to be insufficient. The 
geometrical features of some crystal structures can be 
described only with the aid of expanded non-Fedorov 
space groups. 

First, we divide molecular crystals into homomolec- 
ular and heteromolecular. The former are built up of 
molecules having the same chemical composition and 
identical structural formula. The latter are composed 
of chemically different molecules. There is a smooth 
transition between these two types. 

Naphthalene is a typical homomolecular crystal 
(Abrahams, Robertson & White, 1949; Cruickshank, 
1957) where the molecules occupy the single system of 

equivalent positions [P2a/c, Z = 2  (i)*]. Here all the 
molecules are symmetrically related and therefore have 
the same structure and environment. In crystals of 
tolane (Robertson & Woodward, 1938; Samarskaya, 
Myasnikova & Kitaigorodsky, 1968) molecules occupy 
two systems of positions [P21/c, Z = 4  (T,1)] and, 
though the symmetrically unrelated molecules are 
practically identical in geometry, their environments 
differ. In such cases, molecules of different structure 
can coexist in the same crystal. Thus, in crystalline 
isoleucine (Torii & Iitaka, 1971) half the molecules are 
gauche, the other half trans [P21, Z = 4  (1,1)]. We call 
crystals in which chemically identical molecules occupy 
more than one system of equivalent positions quasi- 
heteromolecular. 

Crystals of tolane-diphenylmercury are hetero- 
molecular [P21/c, Z = 2  (1,1)] (Kitaigorodsky, Myas- 
nikova & Samarskaya, 1963). However, they do re- 
semble tolane itself. The similarity between the mole- 
cules of diphenylmercury and diphenylacetylene (to- 
lane) permits them to replace each other without signif- 
icantly affecting the packing. A typical heteromolecular 
crystal with quite different molecules is the molecular 
complex a-D-glucose-urea (Snyder & Rosenstein, 

* The symbol of the structural class to which naphthalene crystals 
belong is given; this concept is discussed below. 


